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VORTICAL MOMENTUM OF BOUNDED IDEAL 

INCOMPRESSIBLE FLUID FLOWS 

V. A.  V l a d i m i r o v  UDC 532.51 

1. The true momentum 

I ~ f vdV 

exists in three-d imensional  homogeneous incompress ible  fluid flows filling the whole space and at r e s t  at  
infinity only when the velocity field v(r ,  t) sat isfies the conditions [1] 

r~l v(r,  t) I-+ 0 as r ~-~ I r [-+ oo,~ (1.1) 

which excludes the important  cases  of flows possess ing  source  and dipole asymptot ics .  ~ (1.1) is satisfied, 
then I-- O. 

Indeed j0 v f l V  ----- ~ (xwi:) dV -~ ~ xivhdS h. (!.2) 

The continuity equation and the rule of summation over  repeated indices are  used, and x k a re  Car tes ian  
coordinates .  

The last  integral  in (1.2) is taken over an infinitely remote  surface.  It equals zero because of (1.1) so 
that I = 0. Therefore ,  the true momentum either does not exist  for the flows under considerat ion,  or is zero.  

For this reason,  the so-cal led  Hvortical" momentum of the flow is introduced 

P-----7 r.<o)dV, 0) __--__- rot v. (1.3) 

This quantity was defined [2] only for fluid flows filling all space. It possesses  ~he following proper t ies :  

a) It exists if r4]w(r, t ) ] - -0  as r - - ~ ;  this r equ i rement  is less constraining than (1.1) since it imposes a 
cons t ra in t  on the behavior of the vortex field and not on the velocity at  infinity; 

b) it posses ses  the dimensionality of a momentum; 

c) it is independent of the select ion of the origin since SeJdV -~ 0 in the case under considerat ion;  

d) Under the effect  of external  volume forces f(r, t) it var ies  analogously to the physical  momentum 
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dP j f(r~ t)dV. (1.4) 
dt 

The definition (1.3) is applicable to both ideal and viscous fluid flows. 

An extension of the concept of  the vor t ica l  momentum to the case of the presence  of some moving 
bounded cavit ies,  solid or  deformable bodies in the fluid was proposed in [3]. The fluid hence remains  
unbounded at infinity in all direct ions.  We call  the fluid boundaries in such flows interior .  According to [3], 
the main condition which the vor t ica l  momentum should sat isfy during its extension is compliance with a 
dynamic equation analogous to (1.4). 

At the same time, fluid flows in the presence  of exter ior  boundaries a re  of great  interest .  In many 
cases ,  the s y m m e t r y  of these boundaries permi ts  the expectation of the presence  of integral  flow charac te r i s t i cs  
s imi la r  to the momentum. Among such flows, for instance, a re  the fluid flow in a half space bounded by a 
plane wall, and the flow in a pipe. It can be shown that the true momentum of the flow in a half space either 
exists or  equals zero.  For  the flow in a pipe I= 0 if the fluid is at  r e s t  at  the infinitely remote  endfaees of the 
pipe. 

The question of defining the momentum concept in the presence  of exter ior  boundaries (and par t icular ly  
for the flow in a pipe) has acquired special  urgency in connection with the vor tex model of the loss of super-  
fluidity by liquid helium, proposed by R. Feynman.  In papers  on this question, it is often assumed that the 
vor tex  per turbat ion is generated near the wall of a capi l lary,  and the conditions for this generation a r e  de ter -  
mined by the energy  and momentum of the vor tex perturbat ion [4, 5]. The question of the possibi l i ty of dif- 
ferent  definitions of  the momentum in this case  is posed in [6], where the hypothesis is expressed that the 
vor tex  r ings in a superfluid fluid should be hollow. Hence, it is important  to determine the magnitude of the 
moment  for flows which have both exter ior ,  a t  r e s t ,  and also inter ior  moving boundaries.  The analysis of the 
momentum concept is also of independent in teres t  to hydrodynamicis ts .  

An extension of the concept of the vortex momentum to the case of fluid flows with exter ior  boundaries is 
examined in this paper.  Caverns (cavities) and solid or deformable bodies, i.e.,  inter ior  boundaries not 
abutting the exter ior  boundaries,  can hence be presen t  in the fluid. 

The main requi rements  which the momentum to be determined should sat isfy a re  the following: 

a) It should exist  for a sufficiently broad class  of flows and their exter ior  boundaries F, par t icular ly  for 
flows with boundaries going to infinity; 

b) it should have the dimensionali ty of a momentuml 

c) it should sat isfy a dynamic equation which is an extension of (1.4) ; 

d) upon remova l  of the outer boundaries f rom the body and the domain of concentrated vort ici ty,  the 
quantity to be determined and the corresponding dynamical  equation should go over  into the known 
express ion  for the vor t ica l  momentum of a fluid unbounded at infinity [2, 3] ; 

e) upon considerat ion of  the motion of a body in a fluid without vor t ices ,  the momentum to be determined 
should agree  with the known apparent  momentum; 

f) in the case of the a l ready mentioned s y m m e t r y  of the outer boundaries,  appropr ia te  components of the 
momentum to be determined should sat isfy  (1.4) and, in par t icular ,  should be conserved for f= 0; 

g) we do not impose the requ i rement  of independence of  the quantity to be determined f rom selection of 
the origin.  

Requirements  d) and e) mean that the momentum to be determined should be a ~local" flow charac te r i s t i c  
in some sense.  The nlocalityn denotes the sl ightness of the influence here of the removed exter ior  boundaries 
on the quantity to be determined.  

In addition, an es t imate  of the conservat ion of the quantity to be determined for a typical experimental  
situation is presented in this paper.  

At the end the extension of the concept  of vor t ica l  moment  of momentum [7, 3] to the flowunder con- 
s iderat ion,  and also the method of extending the vor t ica l  momentum concept to the case  of bounded ideal incom- 
press ib le  flows of an inhomogeneous (density p ~ const) fluid, a re  mentioned. 
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fluid 
2. The vor t ica l  momentum is defined in [3] for bounded bodies or cavities (interior boundaries) in a 

P =T rx0~dV-- f r x ( n •  (2.1) 

For simplici ty,  we shall  speak about one body occupying a bounded domain K. The surface integral  in (2) is 
taken over  the boundary of the body OK, and n is the exter ior  normal  to 8K. The f i rs t  integral  in (2.1) is taken 
over  the whole fluid volume. Constraints  a re  hence imposed on the behavior of the fields v(r,  t) and w(r, t): 

when r~---[rl-+ co rJv(r, t) l-+ 0, r4Z(~(r, t) t-~ O, (2.2) 

which permits  considering both the change in the volume of the body K and its t ranslat ional  motion (source and 
dipole asymptotic) .  The constraints  presented are  not cont radic tory  since the velocity field at  large distances 
can be a potential field. 

It is natural  to consider  a di rect  extension of (2.1) to the case of the presence  of exter ior  boundaries F, 
for which the surface  integration is extended over these boundaries as well: 

Po = [  •215 (2.3) 
oK+r ! 

This definition takes account  of the inter ior  and exter ior  boundaries in a symmet r i c  manner.  It can be said 
that it is ei ther  identically the true momentum I or  does not exist. 

Indeed, in cases  of the existence of I and P0 it can be shown by a simple t ransformat ion  that I---P 0. 
Among such cases  are  bounded fluid flows, as well as cases  of the boundaries F going to infinity if (1.1) is 
satisfied. 

When (1.1) is not satisfied,  then neither I nor P0 exist. 

Therefore ,  the definition (2.3) yields nothing new compared to the true momentum I, and the discussion of 
the proper t ies  of P0 reduces  to an analysis  of  the quantity I. 

About I it can be said that even for such flows for which the true momentum exists ,  it does not sat isfy 
the requ i rements  listed in Sec. 1, and often turns out to be quite empty. 

Thus, for flows in a bounded vesse l  at  r e s t  without a body K, we have I=  0 f rom (1.2) outside of the 
dependence on the size of the vesse l  and the acting forces.  Hence I and P0 cannot sa t isfy  a dynamical  equation 
of the type (1.4) in this example,  and a re  not ~tocal '~ charac te r i s t i cs .  This latter is manifest  in the definition 
(2.3) in that the integral  over  F always remains  finite, as though the vesse l  walls are  far f rom the body and the 
domains of concentrated vor t ic i ty  are  not at the vesse l  walls. 

The quantity I also does not sat isfy requi rements  e) and f) f rom Sec. 1. 

The listed disadvantages of the quantities I and P0 are  associated with the fact  that the strong effect  of 
the outer  boundaries F is taken into account. 

Definition (2.1) is free of all  these disadvantages if OK therein is understood only as the interiior fluid 
boundary. The following asser t ion  is valid for (2.1). 

In th ree-d imens iona l  flows of a homogeneous, ideal, incompressible  fluid with any outer boundary F at 
r es t ,  the vor t ica l  momentum defined in conformity to (2.1), where OK is understood to be the inner boundaries ,  
will sat isfy the dynamical  equation 

d P  o " f d V  - -  --~ . 
d'-i- = ,t p n d S  + [v n + r • v (~. n) + r • (n X [)1 d S  . (2.4) 

OK F 

where v 2 = v - v  and p is the p res su re .  

If the boundaries F a r e  removed  to infinity, then the constra ints  (2.2), corresponding to the conditions 
for the existence of the integrals in (2.4), a re  imposed on (2.2). Smoothness conditions needed for the proof 
a re  also imposed on these fields and on F and OK. Thus, the field v should be twice continuously differentiable. 
Analogous constraints  are  imposed on the field f. The inter ior  moving boundaries aK a re  assumed not to abut 
on the outer  boundaries I" at  r es t .  
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Equation (2.4) is obtained quite s imply  for the case  of no body K in the fluid, hence the in tegra l  over  ~K 
vanishes  in (2.4). The proof  of (2.4) is compl ica ted when K is p r e sen t ,  hence we p r e sen t  its bas i s  s teps here.  

Le t  us r e w r i t e  (2.1) in t ensor  f o r m  

OK 

where  elk I is the unit  absolute ly  a n t i s y m m e t r i c  tensor  of the third rank,  and dS i is the component  of the vec tor  
su r f ace  e l emen t  d i rec ted  into the fluid. The ru le  of summat ion  over  r e p e a t e d  subsc r ip t s  is used throughout. 

Since they bound the fluid volumed the su r faces  OK and F cons i s t  of  the ve ry  s ame  fluid pa r t i c les  all  the 
t ime ,  i .e . ,  a r e  fluid su r f aces  [8]. 

Using the known ru le  of  different ia t ion with r e s p e c t  to the fluid volumes and su r faces  [7], we obtain 

�9 O v  

dP" yeihZ (Vk0)! d e ~  dt~n)d~qm__yet~tSlmnXtjYno_~dSa" 2 T 
OK OK 

(2.5) 

Using the equations of  motion of an ideal fluid in the f o r m  

dv n Op 0% 
dt o =  + /~ '  o%-~ = O, 

d~ t Ov Ov 0 ] .  
- -  E a n 

we conver t  (2.5) to the f o r m  

dt , �9 , , a I 8ih l 8 I m n X l j n d S m "  
OK r r r 

(2.6) 

The subsequent  p r o b l e m  is to t r a n s f o r m  the in tegra l  

I SihlElmnXhU n aYa r ~ dS~. 
(2.7) 

We use  the following method to do this.  Let  us continue the field v ( r ,  t) in an a r b i t r a r i l y  sufficiently smooth 
manner  on K, a f t e r  which the poss ib i l i ty  of conver t ing the in tegra l  over  F to vo lume in tegra ls  over  the whole 
domain bounded by the ex t e r i o r  boundar ies  is manifes t .  Here ,  in genera l ,  w = ro t  v ~ 0, Q div v ~ 0 on K. Con-  
ver t ing  (2.7) by using the identity 

av h a v  av z (2.8) 
szm,~ ax axl~ --  ~ ~ -}- o)~Q, 

we obtain 

' 0 y  J" 8 i h l S l m n X h V n ' ~  m d S a  -~- _ _  8ihl3Ch~)l(OmrtmdS~ 
F 

a f t e r  which we obtain (2.4) f r o m  (2.6). 
r o t  (curl) to the vec tor  equal i ty 

12a Ox a O~n - -  8nPqPpO)q" 

The proof  p resen ted  for the re la t ionship  (2.4) is g rea t ly  analogous to the proof  p resen ted  in [3]. 

If we introduce the m o m e n t u m  P1 of the body K, then we will have for the sum Pl + P 

(e l  + r )  : r - f(v . + r x  ( - x 0 } e s , :  
r 

where  F is the to ta l  ex t e r i o r  force  act ing on the body K and the fluid. 

The identi ty (2.8) is obtained by using the appl icat ion of the opera t ion  

(2.9) 
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The p r i n c i p a l  d i f f e r e n c e  be tween  (2.4),  (2.9),  a n d t h e  c o r r e s p o n d i n g  equa t ions  for  the t rue  m o m e n t u m  is  

the  a b s e n c e  of  .IpndS, e x p r e s s i n g  the f o r c e  e f f e c t  of  the e x t e r i o r  b o u n d a r i e s  on the  f lu id ,  f r o m  the f i r s t  t e r m s .  
P 

A s u f f i c i e n t l y  c o m p l i c a t e d  i n t e g r a l  o v e r  F s a t i s f y i n g  the  r e q u i r e m e n t  f o r m u l a t e d  in Sec.  1 e n t e r s  i n s t e a d :  

Upon r e m o v a l  of  the b o u n d a r i e s  F f r o m  the  body K and the r e g i o n  of  c o n c e n t r a t e d  w and f, th is  i n t e i F a l  t ends  
to z e r o  so tha t  (2.4) and  (2.9) r e d u c e  to equa t ions  fo r  the  unbounded f luid [3]: 

_ - ~  , ~ "  dP~ I" pnidS -;- j .i~dV, ~ (P,. 4- P~ = F. (2.10) 
d t  O~( ' 

3. If f x  n = 0 and w" n = 0 on F ,  then (2.4) and (2.9) a r e  s i m p l i f i e d  s u b s t a n t i a l l y :  

- i pn~ZS + ~ d v - ~  t v~n~'S. (3.1) 
d: d~" o r 

d f ~ , . (P~+ P) =F----5-.t 
F 

I t  is  s e e n  tha t  for  f lows above  a p l ane  (3.1) a g r e e s  with (2.10) for  m o m e n t u m  c o m p o n e n t s  p a r a l l e l  to the  
p l a n e ,  in c o n f o r m i t y  wi th  the r e q u i r e m e n t  fo r  s y m m e t r i c  e x t e r i o r  b o u n d a r i e s  f o r m u l a t e d  in Sec .  1. The s a m e  
can  be  sa id  a b o u t  the a x i a l  c o m p o n e n t  of  the m o m e n t u m  in a p ipe  and abou t  the c o m p o n e n t  of  P t angen t  to the 
p l a n e s  in the  gap b e t w e e n  the p l a n e s .  

The c a s e  with w �9 n ~ 0 on F is m o r e  c o m p l i c a t e d .  I t  is  e s p e c i a l l y  i m p o r t a n t  in connec t ion  with m o d e l s  of  
the  lo s s  of  s u p e r f l u i d i t y  by  h e l i u m  [5]. in th is  c a s e ,  the v o r t e x  l i ne s  a r e  a l r e a d y  not  c l o s e d  o u t s i d e  of  F and 
the quan t i t y  P (2.1) t u r n s  ou t  to be dependen t  on the s e l e c t i o n  of  the s e l e c t i o n  of the  o r i g i n .  

F o r  s i m p l i c i t y ,  l e t  us c o n s i d e r  a f low wi thout  a body K. Then the v o r t i c a l  m o m e n t u m  wi l l  change  by  the 
quan t i ty  

! R x ~' o~3v (3.2) 
2 J 

when the origin is shifted by the vector R. In the case Of constant (3.2) this quantity is negligible for the dy- 
namical analysis. However, this is not so in the general case since 

= ,1 v ( o .  n) c~S ~ O. (3 .3)  
r 

The p r o o f  of the a s s e r t i o n  (3.3) does  not  e x i s t  in  g e n e r a l  f o r m .  Moreover~  e x a m p l e s  can  be  c o n s t r u c t e d  in 
which  (3.3) is  not  s a t i s f i e d .  The p h y s i c a l  m e c h a n i s m  s p e c i f y i n g  the n o n c o n s e r v a t i o n  of  !'o~dV is t e n s i o n  and 

c o m p r e s s i o n  of the  v o r t e x  l i n e s ,  hence  (3.3) i s  v a l i d  for  g e n e r a l  t h r e e - d i m e n s i o n a l  f lows.  C o n s t r u c t i o n  of con -  
f i r m i n g  e x a m p l e s  fo r  the b o u n d a r i e s  F of  a g e n e r a l  f o r m  c a u s e  no d i f f i c u l t i e s .  To p r o v e  (3.3) in the  c a s e  of  
f low o v e r  a p l a n e ,  l e t  us c o n s i d e r  the fo l lowing  e x a m p l e .  Its c r u x  is  to c o n s t r u c t  a f low for  which the c o n s e r -  
v a t i o n  of  the quan t i t y  y odV is  i n c o m p a t i b l e  with law of  c o n s e r v a t i o n  of the  v o r t i c a l  m o m e n t u m  (2.1.) p r o v e d  

e a r l i e r .  

Two coaxial vortex semirings with thin cores move over a plane so that the ends of these semirings rest 

in the plane F perpendicularly to it. Upon adding this flow to the flow in all space by the method of constructing 

a "reflection," we obtain the problem of interaction between two coaxial thin vortex rings. 

In this case the considered conservation law for the vortical momentum takes the form 

+ o ( q +  + = o 

w h e r e  l ~ ,  F ~ ,  and a ~  a r e ,  r e s p e c t i v e l y ,  t t ie  r a d i u s ,  c i r c u l a t i o n ,  and  r a d i u s  of  the  c o r e  s e c t i o n o f t h e  c~-th h a l f -  

r i n g ,  aJl~ << 1 (o~ = l ,  2). 

This  law is  i n c o m p a t i b l e  wi th  the  c o n s t a n c y  of  S~dV, which is  w r i t t e n  in the f o r m  

d a2  = 

To p r o v e  this  a s s e r t i o n  i t  is  n e c e s s a r y  to invo lve  the c o n s e r v a t i o n  law for  the c o r e  v o l u m e  (not s u m m e d  o v e r  cO 

[' +~ % )1} d--; T = 0 (~ = l, 2h 
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as well as the fact  that a~/ /~  can be selected a rb i t r a r i ly  less than any previously assigned number. 

Therefore ,  because of (3.3) the r ight  side of (2.4) has nonzero tangential components for the case of flow 
above a plane if the origin is chosen not on the plane. If the origin is selected on r and n•  f=0  on F, then we 
again have (2.10) for the components of P tangent to F. This follows f rom r x vIIn on F. 

Only in special  cases  can (2.10) be obtained for components tangent to the planes for flows in slots 
between para l le l  planes with w" n ~ 0 on r .  Among these a re  plane flows and flows in whicha l l  the vortex lines 
can be terminated only on one of the planes. In the lat ter  case (2.10) is obtained by selecting the origin on 
that plane to which the vortex lines abut. 

The existence of such special  cases  is also possible for the flow in a pipe. However, it is c lear  that 
such cases  are  exceptional for pipes and slots ,  althongh their c lassif icat ion is a difficult problem. 

It should be noted that flows with w" n # 0 on r a re  flows with a singulari ty on the boundary. Thus, for 
the flow over  a plane, the known method of adding a flow to the flow in all space by construct ing the "reflect ion s 
resul ts  in breaks in w on 1 ~. As is known, these latter are  associa ted  with singulari t ies in the velocity 
field [7]. Hence, in o rde r  for the presented proof of (2.4) to be r igorous  for w" n #  0 and F, it is neces sa ry  
either to prove the neces sa ry  differentiabiHty of  the veloci ty field, or  r impose the condition ~ x n = 0 on F, 
which is dynamical  for the flows over  a plane and in a slot. This means that the validity for all t follows f rom 
its compliance at  t = 0, which is seen at  once af ter  the construct ion of the "reflect ion."  It is true that here and 
throughout the.assumption has been used about the conservat ion of the n e c e s s a r y  smoothness of the flow with 
time. This question is complex and unsolved [9]. 

The resul t s  obtained for flows in a pipe, slot, and half-space can be summar ized  as follows: 

a) For all these flows, the requ i rement  w. n = 0 on F,  which is evidently dynamical,  is the sufficient con- 
dition for the corresponding vor t ica l  momentum components to v a r y  analogously to the true momentum (1.4) and 
(2.i0) ; 

b) for w" n # 0 on l ~ the same result  can be obtained for the flow over a plane by selecting the origin 

thereon;  

c) fo r  flows in a slot and pipe (2.10) for vor t ica l  momentum components paral lel  to the walls can be 
obtained only for flows of a special  kind. In general ,  it is impossible to do this for the momentum (2.1). 

4. Let  us now examine the case  when the boundaries a re  removed  f rom the body K and the concentrat ion 
region ~, f= 0. This corresponds  to the often encountered experimental  situations, for instance,  to the motion 
of  a vortex r ing in a room.  In this case (3.1) affords the possibil i ty of es t imat ing the accu racy  of conserving 
the vor tex momentum. This es t imate  is s imultaneously a verif icat ion of the cus tomary  method of descr ibing 
the vor tex momentum of r ea l  bounded flows by using the model of a fluid unbounded at infinity. 

By using the express ion for the principal  t e r m  of the asymptot ic  of the velocity field of unbounded incom- 
press ib le  fluid flows [7] 

vi ~ 4n 0x~ax k as r--~ 

and (3.1), we obtain the es t imate  

where R is the charac te r i s t i c  distance to the outer walls F;  A is a constant  of the order  of one, dependent on 

the geomet ry  of  the walls 1". 

We obtain the es t imate  of the change in momentum because of the influence of external  walls for a vortex 

r ing in a vesse l  

,Ap, A U t ( ~ )  s 

where U and I a re  the r ing veloci ty and size. For  I/R ~0 .1  and R ~Ut  we obtain [AP[/IP] ~ t0-4, i.e., conse r -  
vation of the vor tex  momentum with high accuracy.  

5. According to the method proposed in this paper ,  the extension of  the concept  of the vor t ical  momentum 
and the ideas of [3], the vor t ical  momentum can also be introduced for bounded flows of an ideal incompress ible  
inhomogeneous (density p # const) fluid. 
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Methods analogous to that considered also pe rmi t  introduction of  the concept of the vor t ica l  nmment of 
momentum [7, 3] of bounded fluids. Thus, an equation of the type (2.4) can be obtained for the quantity 

'{s } M=--g- rX(rX~o) dV-k r X [ r X ( n X v ) ] d S .  
eK 

This definition is also extended to the case of inhomogeneous, incompress ib le  fluid flows. 

The extension of the resu l t s  of this paper to the case of viscous fluid flows bounded by external  walls at 
r e s t  is also possible  although difficulties with vor t ic i ty  diffusing f rom these walls occur  here.  It is possible 
to obtain an equation of type (2.10) for flows in a slot, pipe, and half-space if this vor t ic i ty  is assumed localized 
near the walls F and it is not included in the definition of the momentum (2.1) since otherwise the integrals in 
(2;1) cannot exist.  

The following can be said with r e spec t  to the application of the concept of the vor t ica l  momentum (1.3) to 
obtaining the cr i te r ion  for the loss of superfluidity of liquid helium. The concept of the true momentum, which 
does not at all agree  with the vor t ical  momentum for the flow in a capi l lary or  near its exit, was used in [10] to 
obtain the c r i te r ion  for the loss of superfluidity. Hence, the use of the vor t ical  momentum in this case is a 
hypothesis based on dimensional analysis ,  but no more.  The situation is aggravated by the fact  tha~;, according 
to the resul ts  of Sec. 3, the vor t ica l  momentum has no physical  meaning for the case w ' n #  0 on 1". 

It hence follows that the application i tself  of the concept of the vor t icaI  momentum to the problem of the 
loss of superfluidity requi res  c r i t ica l  analysis  and, possibly,  reexamination.  
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